Atommüll und Endlager
Atommüll ist radioaktiver Abfall, der unter anderem bei der Nutzung der Atomenergie zur Stromerzeugung, in der Forschung, in der Industrie und in der Medizin anfällt. Seit den 1950er Jahren haben sich hunderte Tonnen Atommüll angesammelt – und ein drängendes Problem ist nach wie vor ungelöst: die Entsorgung des radioaktiven Abfalls.
- Wie Atommüll entsteht
- Atommüll ist nicht gleich Atommüll
- Endlager gesucht: ein Atommülllager für die Ewigkeit
- Weltweit gibt es kein Endlager für hochradioaktiven Atommüll
- Endlagersuche in Deutschland
- Uran als Atommüllerzeuger
Das Wichtigste in Kürze
- Atommüll entsteht unter anderem durch die Uranwirtschaft, also durch die Verarbeitung von Uranerz, sowie in Kernkraftwerken, in Kernforschungszentren oder in Wiederaufbereitungsanlagen.
- Da die Palette von kontaminierten Stoffen sehr breit ist, unterscheiden Fachleute zwischen schwach-, mittel- und hochradioaktivem Müll.
- Um den strahlenden Müll für alle Zeit sicher zu entsorgen, suchen Politiker und Wissenschaftler bereits seit Jahrzehnten nach Endlagerstätten.
Wie Atommüll entsteht
Atommüll entsteht unter anderem durch die Uranwirtschaft, also durch die Verarbeitung von Uranerz, sowie in Kernkraftwerken, in Kernforschungszentren oder in Wiederaufbereitungsanlagen. Doch zu den radioaktiven Abfällen gehören auch alle Materialien, die beim Umgang mit den strahlenden Stoffen anfallen, wie Arbeitskleidung, Putzlappen, Werkzeuge oder Behälter.
Auf diesen Wegen ist in Deutschland eine beachtliche Menge Atommüll zusammengekommen: Laut dem Bundesamt für Strahlenschutz warten in Deutschland etwa 17.000 Tonnen radioaktiver Abfall auf eine sachgerechte Endlagerung. Diese Menge wird sich trotz des Atomausstiegs noch weiter erhöhen, denn der größte Teil fällt erst beim Abriss der Meiler nach einer Stilllegung an.
Atommüll ist nicht gleich Atommüll
Da die Palette von kontaminierten Stoffen sehr breit ist, unterscheiden Fachleute zwischen schwach-, mittel- und hochradioaktivem Müll. Außerdem wird in Deutschland noch zwischen wärmeentwickelnden und nicht-wärmeentwickelnden Abfällen, dem physikalischen Zustand und den enthaltenen Radionukliden unterschieden. Diese Kategorisierung ist in erster Linie für die Lagerung des Atommülls von Bedeutung.
Den mengenmäßig größten Teil der atomaren Abfallmenge macht der schwach- und mittelradioaktive Müll aus. Diese Abfälle entstehen nicht nur in Atomkraftwerken, sondern auch in Röntgenabteilungen von Krankenhäusern oder Forschungseinrichtungen. Dazu zählen benutzte Laborschutzanzüge ebenso wie medizinische Strahlenquellen oder nur schwach verstrahlte Reaktor-Bauteile. Schwach- und mittelradioaktive Abfälle enthalten vorwiegend kurzlebige radioaktive Stoffe mit kürzerer Halbwertszeit von dennoch nicht weniger als mehreren Jahrzehnten.
Insbesondere die beim Betrieb eines Kernkraftwerks anfallenden abgebrannten Brennelemente zählen zu den hochradioaktiven Abfällen. Wegen der extrem hohen Strahlung und Wärmeleistung müssen diese Abfälle in speziellen Castor-Behältern gelagert werden. Diese bestehen aus einem einteiligen gusseisernen Behälterkörper mit Kugelgraphit, der beim Transport und bei der Lagerung jegliche Strahlung nach außen vermeiden soll.
Endlager gesucht: ein Atommülllager für die Ewigkeit
Der Begriff "Endlagerung" bezeichnet die dauerhafte Verwahrung von Abfällen an einem speziell dafür eingerichteten Ort. Der Begriff wird meist im Zusammenhang mit der Entsorgung von hochradioaktiven Abfällen (beispielsweise abgenutzte Brennelemente aus Atomkraftwerken) benutzt.
Die Lagerung von Atommüll ist äußerst problematisch, denn die radioaktiven Stoffe müssen auf eine sehr lange Dauer sicher gelagert werden. Bis eine Lösung für die Endlager-Frage gefunden ist, wird der Atommüll in sogenannten Zwischenlagern gesammelt. In Deutschland wurden an den Standorten von zwölf Atomkraftwerken solche Zwischenlager eingerichtet, darunter Lubmin, Gorleben, Ahaus und im Salzstock Asse.
Um den strahlenden Müll für alle Zeit sicher zu entsorgen, suchen Politiker und Wissenschaftler bereits seit Jahrzehnten nach Endlagerstätten. Insbesondere mittel- und hochradioaktive Abfälle stellen aufgrund der langen Halbwertszeiten große Herausforderungen an die Entsorgung. Das deutsche Entsorgungskonzept sieht vor, alle Arten radioaktiver Abfälle in tiefen geologischen Schichten wie Salz-, Ton- und Granitformationen zu lagern. In Deutschland kommen damit beispielsweise die Salzstöcke Zwischenahn, Wahn (Hümmling), Gülze-Sumte und Wattekatt in Betracht. Derzeit will die Regierung ein neues Endlagersuchgesetz erarbeiten, in dem auch Kriterien für einen möglichen und sicheren Standort festgehalten werden.
Weltweit gibt es kein Endlager für hochradioaktiven Atommüll
Aktuell gibt es weltweit kein Endlager für hochradioaktive Strahlenabfälle. Deutschland ist in diesem Problem nicht allein, da auch in anderen Ländern keine geeigneten Endlager gefunden wurden. Ein langjähriger Kandidat in Deutschland, der Salzstock Gorleben, wurde nach jahrzehntelangen Untersuchungen im Jahr 2020 endgültig als ungeeignet ausgeschlossen. Derzeit existieren nur Endlager für schwach- und mittelradioaktive Materialien.
In den USA wurde lange Zeit das abgelegene Yucca-Gebirge in Nevada als möglicher Standort für ein Endlager diskutiert. Das Projekt, das seit 1978 lief und bereits etwa zehn Milliarden Dollar verschlang, wurde jedoch 2009 vorübergehend von Präsident Barack Obama gestoppt. In Frankreich wird die Möglichkeit einer Endlagerung hochradioaktiver Materialien ab 2025 in den tiefen Stollen von Bure in Lothringen untersucht. Dabei stoßen die normalerweise atomkraftfreundlichen Franzosen auf erhebliche Probleme mit einem atomaren Endlager in unmittelbarer Nähe.
In Großbritannien scheiterte im Jahr 1997 der Bau einer unterirdischen Erkundungsstätte für ein Endlager. Derzeit werden zwei neue Standorte diskutiert, deren Eignung als Endlager jedoch noch völlig unklar ist. Das weltweit erste Endlager wird voraussichtlich neben dem Atomkraftwerk Olkiluoto an der Westküste Finnlands errichtet. Ab dem Jahr 2025 sollen dort hochradioaktive Abfälle in einer Tiefe von 450 Metern gelagert werden. In Schweden plant man ebenfalls den Bau eines Endlagers bei Forsmark im Osten des Landes, das im Jahr 2022 genehmigt wurde.
Endlagersuche in Deutschland
Im April 2013 einigten sich Vertreter von Bund und Ländern nach anderthalbjährigen Verhandlungen auf einen Entwurf für ein Endlagersuchgesetz. Der Entwurf sieht vor, dass eine Enquetekommission bis Ende 2015 über mögliche Kriterien beraten soll, nach denen ein Standort ausgewählt werden kann. Mitte 2016 stellte die Kommission ihren Abschlussbericht vor. Die eigentliche Entscheidung, wo das Lager entsteht, soll bis 2031 fallen
Im April 2015 stellten die Experten der Arbeitsgruppe der Endlager-Suchkomission ein verschlossenes Endlager für den Zeitraum "zwischen 2095 und 2170 oder später" in Aussicht.
Mehrbarrierensystem soll Endlagerstätte mindestens eine Million Jahre sichern
Die Endlagerung von hochradioaktivem Material ist mit hohen Standortanforderungen verbunden. Nach den Vorgaben des Bundesumweltministeriums müssen Lagerstätten so konzipiert sein, dass Atommüll mindestens für die Dauer von einer Million Jahre zuverlässig verschlossen ist. Diese Vorgabe soll mithilfe eines sogenannten Mehrbarrierensystems realisiert werden, welches aus geologischen, technischen und geotechnischen Hürden besteht. So soll ein Austreten von radioaktiven Stoffen in die Biosphäre dauerhaft verhindert werden.
Es hat sich gezeigt, dass die Verbringung in tiefe geologische Formationen die sicherste Form der Lagerung darstellt. Die geologischen Formationen (Salz-, Ton-, Granitformationen mehrere hundert Meter unter der Erdoberfläche) umschließen die Schadstoffe wie eine natürliche Barriere. Sie werden durch geotechnische Barrieren, wie etwa Schachtverschlüsse oder Pufferzonen aus Bentonit, ergänzt. Darüber hinaus werden technische Barrieren eingerichtet. Dazu werden die hochradioaktiven Stoffe zunächst in Glas eingeschmolzen. Diese Glasblöcke werden wiederum in Edelstahlbehälter eingeschweißt. Mittelradioaktive Stoffe werden in Spezialfässern gelagert.
Für sich allein genommen, könnte keine Barriere die Schadstoffausbreitung in die Umwelt verhindern. Deshalb werden sie so kombiniert, dass sie in ihrer Gesamtheit eine möglichst lange Isolationsdauer bieten.
Uran als Atommüllerzeuger
Uran ist ein chemisches Element, das 1789 von dem deutschen Chemieprofessor und Apotheker Martin Heinrich Klaproth aus dem Mineral Pechblende isoliert wurde. Die Entdeckung der Kernspaltung im Jahr 1938 verlieh Uran seine besondere Bedeutung: Das Uranisotop Uran-235 ist durch thermische Neutronen spaltbar und in der Lage, eine Kernspaltungs-Kettenreaktion auszulösen. Seitdem wird Uran als Primärenergieträger in Kernkraftwerken und Kernwaffen genutzt, was ihm eine enorme wirtschaftliche Bedeutung verlieh.
Uranabbau
Die Gewinnung von Uran erfolgt in sogenannten Uranlagerstätten, auch als Uranabbau bezeichnet. Dabei wird Uran im Tagebau, unter Tage sowie durch Lösungsbergbau gewonnen. Große Uranvorkommen finden sich vor allem in Australien, Kanada, Kasachstan, Russland, Niger, Namibia, Usbekistan und den USA. In der DDR wurde nach dem Zweiten Weltkrieg ein umfangreicher Uranabbau betrieben. Die größeren Lagerstätten befanden sich im Erzgebirge, in Ostthüringen und in der Sächsischen Schweiz. In Westdeutschland gab es kleinere Uranvorkommen im Schwarzwald, im Bayerischen Wald und im Fichtelgebirge, jedoch wurde dort der Abbau hauptsächlich zu Forschungszwecken betrieben und nicht in großem Umfang produziert. Heutzutage wird in Deutschland kein Uranabbau mehr betrieben. Die Hinterlassenschaften des Uranabbaus, wie Abraumhalden und Absetzseen, führen auch in den Gebieten, in denen schon lange kein Uranabbau mehr stattfindet, aufgrund der natürlichen Radionuklide im Uranerz zu einer Gefährdung der dort ansässigen Bevölkerung und der Umwelt.
Ein Unfall in Verbindung mit den Hinterlassenschaften des Uranabbaus ereignete sich nahe des Rio Puerco in New Mexico im Jahr 1979. Dieser Unfall wurde radiologisch als schwerwiegender angesehen als der Störfall im amerikanischen Kernkraftwerk Three Mile Island im selben Jahr. Ein Dammbruch führte dazu, dass etwa 400.000 Liter radioaktives Wasser in den Fluss flossen, der als Wasserreservoir für die dort ansässige indigene Bevölkerung diente. Untersuchungen ergaben, dass der gemessene Wert rund 7000-mal über dem zulässigen Grenzwert für Trinkwasser lag. Viele Krebsfälle, die in den folgenden Jahren in der verseuchten Region auftraten, werden mit diesem Unglück in Verbindung gebracht.
Uran-Anreicherung
Uran-Anreicherung bezeichnet den Prozess, bei dem die Isotopenzusammensetzung von Natururan zugunsten des Isotops Uran-235 verändert wird. Die Anreicherung von Uran ist ein wichtiger Teil der Uranwirtschaft. Das Uranisotop Uran-235 ist fähig, eine Kernspaltungs-Kettenreaktion auszulösen. Neben der Verwendung in Kernwaffen wird Urananreicherung auch für den Betrieb von Kernkraftwerken benötigt. Für Kernwaffen ist eine besonders hohe Anreicherung erforderlich, um eine hohe Sprengkraft zu erreichen. Der Bau und Betrieb von Anreicherungsanlagen erfordern ein hohes technologisches Niveau und Fachwissen.
Verwandte Themen
Weiterführende Links
- Das Bundesamt für Strahlenschutz
- Website der Brennelement-Lager Gorleben GmbH (BLG)
- Gemeinsam gegen Atomenergie - Zur Webseite ausgestrahlt.de
- Umfrage: Fänden Sie es richtig, wenn neben dem niedersächsischen Gorleben auch andere Standorte bundesweit als Endlager für Atommüll geprüft werden?
- Umfrage: Würden Sie jetzt zum Ausstieg aus der Kernkraft ein Atommüll-Endlager in Ihrem Bundesland akzeptieren?
- Jährlich produzierte Menge an Atommüll in weltweit ausgewählten Ländern (in 100 Tonnen)
Jetzt Stromtarif sichern
Sicherheit durch Preisgarantie
Die Preise am Markt steigen. Achten Sie daher bei Ihrem Wechsel auf die Preisgarantien des jeweiligen Tarifs. So können Sie sich bis zu 24 Monate Preisgarantie sichern und müssen sich keine Sorgen um eine Preiserhöhung machen.
-
Strom ab 0,24 Euro/kWh
-
Bis zu 850 Euro sparen
So haben wir gerechnet
Wohnort: Würzburg, 97084
Jahresverbrauch: 3.500 kWh
Günstigster Tarif: immergrün! Energie Spar Smart Premium B, Kosten im ersten Jahr: 765,05 Euro
Grundversorgungstarif: Stadtwerke Würzburg AG Frankenstrom Komfort, Kosten: 1.660,88 Euro
Einsparung: 895,83 Euro
(Stand: 17.09.2024) -
Schutz durch Preisgarantie
Die Preise am Markt steigen. Achten Sie daher bei Ihrem Wechsel auf die Preisgarantien des jeweiligen Tarifs. So können Sie sich bis zu 24 Monate Preisgarantie sichern und müssen sich keine Sorgen um eine Preiserhöhung machen.